CheXFusion: Effective Fusion of Multi-View Features using Transformers for Long-Tailed Chest X-Ray Classification Dongkyun Kim

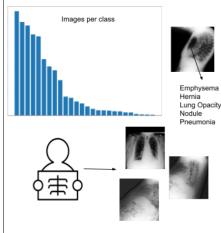
Carnegie Mellon University, School of Computer Science

Carnegie Mellon University School of Computer Science

Motivation

Challenges Unique to Medical Image Classification

- Long-Tailed Distributions: Medical conditions range from extremely common to very rare, and the dataset reflects this. Traditional ML models struggle with this imbalance, often misdiagnosing rare conditions.
- Label Co-Occurrence: Patients may have multiple conditions simultaneously, requiring a multi-label classification approach. Ignoring this can result in incomplete or inaccurate diagnoses.
- **Multiple Views**: Different imaging modalities and angles provide complementary information. Not exploiting these multiple views can lead to missed diagnostic cues.



Gaps in Existing Solutions

- Most existing approaches do not fully address these challenges, particularly in the context of chest X-rays.
- Previous work either focuses on single-view models or do not adequately handle class imbalance and label cooccurrence.

Overview

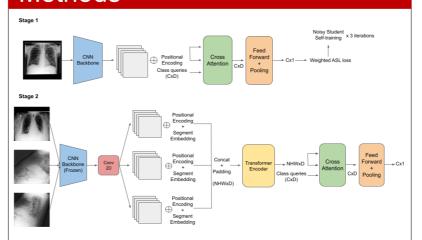
Our approach consists of two stages:

- Stage 1: Single-view CNN backbone trained as the feature extractor
- **Stage 2**: Transformer-based fusion module, CheXFusion, to integrate multi-view features.

Key Takeaways

- Our solution scores **first place** in both validation and test leaderboards of CXR-LT.
- CheXFusion can be applied as a plug-and-play method for other multi-label classification tasks.

Methods



1. Backbone Pre-training

Objectives: A general feature extractor for each view in the subsequent fusion stage.

Key Innovations: Employ ML-Decoder as a classification head.

2. Transformer Fusion Model (CheXFusion)

Objectives: Integrate features from multi-view images effectively.

Key Innovations: Uses self-attention and cross-attention mechanisms for dynamic aggregation. Leverages positional encoding and segment embedding to handle permutation invariance.

3. Loss Function

Objectives: Tackle inter-class and intra-class imbalances in multilabel long-tailed classification.

Key Innovations: Weighted Asymmetric Loss

$$L = -\sum_{i=1}^{C} w_i ((1 - p_i)^{\gamma_+} y_i \log(p_i) + p_{mi}^{\gamma_-} (1 - y_i) \log(1 - p_{mi}))$$

4. Self-training

Objectives: Utilize additional unlabeled data

Key Contribution: Employs the "Noisy Student" approach, using a teacher model to produce pseudo-labels for unlabeled data

Experiments

wBCE	ASL [1]	Ml-decoder [23]	Hard pseudo	Soft proudo	mAP				AUC
WDCE	ASL [1]	Wil-decoder [23]	Hard pseudo	Soft pseudo	total	head	medium	tail	total
					0.311	0.601	0.231	0.122	0.816
\checkmark					0.311	0.597	0.229	0.127	0.814
	1				0.313	0.603	0.231	0.126	0.815
~	1				0.314	0.604	0.232	0.128	0.817
\checkmark	1	~			0.322	0.609	0.234	0.146	0.821
√	1	~	~		0.330	0.614	0.255	0.141	0.828
~	1	1		~	0.336	0.612	0.270	0.143	0.832

Table 2. Ablation studies on the various components of our proposed met

Backbone	Method		AUC			
Backbolle	Metilou	total	head	medium	tail	total
	Single-view	0.340	0.616	0.270	0.152	0.833
	Multi-view Weighted Average (4:6)		0.626	0.284	0.170	0.841
	Multi-view Weighted Average (5:5)	0.357	0.627	0.288	0.172	0.842
ConvNeXt-S-1024	Multi-view Weighted Average (6:4)	0.359	0.628	0.296	0.167	0.844
	Multi-view Weighted Average (7:3)	0.362	0.629	0.306	0.167	0.847
	Multi-view Concat	0.357	0.622	0.293	0.173	0.839
	ChexFusion (Ours)	0.372	0.630	0.312	0.188	0.847

Table 1. Performance comparison of ChexFusion and the baseline methods on the CXR-LT validation set

CheXFusion outperforms several baselines and achieves state-ofthe-art performance on the CXR-LT dataset, indicating its potential for application in clinical settings

Conclusion

			Results			
#	User	Entries	Date of Last Entry	mAP 🔺	mAUC 🔺	mF1 🔺
1	dongkyunk	53	07/09/23	0.372 (1)	0.847 (1)	0.366 (1)
2	lynnj	71	07/13/23	0.348 (2)	0.833 (5)	0.257 (3)
3	wongi_park	61	07/08/23	0.347 (3)	0.836 (2)	0.240 (8)
4	v1olet	21	07/05/23	0.347 (4)	0.834 (3)	0.150 (18)
5	Feng_Hong	65	07/13/23	0.345 (5)	0.834 (4)	0.238 (9)
6	tianjie_dai	12	07/13/23	0.327 (6)	0.822 (7)	0.228 (13)
7	YYama	37	07/12/23	0.326 (7)	0.823 (6)	0.228 (12)
8	peratham.bkk	44	07/12/23	0.317 (8)	0.814 (8)	0.240 (7)
9	cheliu22	16	05/31/23	0.305 (9)	0.811 (10)	0.234 (10)
10	mengyuanma	28	07/10/23	0.302 (10)	0.807 (11)	0.231 (11)
11	liujiaxing	2	06/26/23	0.302 (11)	0.812 (9)	0.224 (14)
12	HuangYating	2	07/09/23	0.292 (12)	0.802 (13)	0.194 (17)
13	amlan107	13	07/09/23	0.292 (13)	0.803 (12)	0.267 (2)
14	1.1.1	30	07/11/23	0.276 (14)	0.779 (14)	0.246 (5)
15	chautruong2602	14	07/09/23	0.262 (15)	0.774 (15)	0.243 (6)

- We propose CheXFusion, a transformer-based fusion module that effectively integrates multi-view medical image features
- We conduct extensive experiments to verify the advantages of various data balancing techniques and self-training.
- Our solution achieves top performance in both the validation and test leaderboards of the CXR-LT shared task